Use of the prompt elasto-gravity signals (PEGS) for earthquake characterization

Kévin Juhel (IRD/Géoazur, LPG Nantes)

IPGP: Martin Vallée, Jean-Paul Montagner, Pascal Bernard, Matteo Barsuglia

Géoazur: Quentin Bletery, Jean Paul Ampuero, Andrea Licciardi, Gabriela Arias

PEGS detection and simulation

How do we model PEGS?

Schematic representation at a time between earthquake onset and first P-wave arrival (direct elastic waves are inside the grey area)

As soon as an earthquake occurs (and thus **before the arrival of seismic waves**), a weak signal is expected to be recorded at a broadband seismometer, due to the combination of :

- **direct effect**: the gravity perturbation induced by the earthquake rupture and the elastic waves (Harms et al. 2015, Montagner et al. 2016)
- induced effect : the elastic relaxation of the Earth, itself affected by the gravity perturbation (Vallée et al. 2017, Juhel et al. 2018)

the 2011 Mw 9.1 Tohoku earthquake

- Bandpass filtering: 0.002 0.03 Hz
- \bullet Criterion to evaluate data quality : \pm 0.8 nm/s² in the 30 min-long interval preceding the event

- <u>Selected broadband stations</u>: networks: IC, IU, G, F-net
 - from 400 to 3000 km
 - good azimutal coverage

Time series truncated at P-wave arrival time

the 2011 Mw 9.1 Tohoku earthquake

Prompt elastogravity signals (PEGS) depend on :

- the earthquake focal mechanism
- the earthquake magnitude

... within the duration of the rupture !

Factors controlling PEGS detectability

 For a given M_w and STF, strike-slip and deep earthquakes generate larger PEGS than thrust earthquakes on shallow dipping interfaces

(Vallée and Juhel, 2019)

Direct relation between STF and gravity perturbations:
 a rapidly growing STF increases signal observability

the 2012 Mw 8.6 Wharton Basin earthquake

(Vallée and Juhel, 2019)

Observed and modeled waveforms (SCARDEC)

Good agreement between observed and modeled PEGS

dashed: $+/-0.4 \text{ nm/s}^2 / \text{dotted: } +/-1.0 \text{ nm/s}^2 / \text{solid: } +/-1.3 \text{ nm/s}^2$

the 2018 Mw 8.2 deep Fiji earthquake

(Vallée and Juhel, 2019)

Predicted PEGS amplitudes (GCMT)

Observed and modeled waveforms (SCARDEC)

dashed: +/- 0.4 nm/s²

Good agreement between observed and modeled PEGS

the 2018 Mw 7.9 Gulf of Alaska earthquake

- PEGS detection requires good broadband stations in a relatively quiet seismic period
- For earthquakes generating PEGS close to seismic noise, detection can be achieved by combining observations at several sensors

(Vallée and Juhel, 2019)

dashed-dotted: $+/- 0.2 \text{ nm/s}^2$ dashed: $+/- 0.4 \text{ nm/s}^2$

Waveform stack, in P-wave arrival reference-time, weighted by sensor quality and expected amplitude

 \rightarrow PEGS recorded with SNR = 10

How can we use PEGS for early magnitude estimation in an operational EWS ?

Deep learning

PEGSNet: a deep convolutional neural network (CNN) that combines convolutional layers and dense layers in sequence

Experimental setup and input data examples from the synthetic database

Results on test set: predictions accuracy

Successful prediction if the estimated $M_w(t)$ lies within \pm 0.4 magnitude units from the ground truth value.

- $\begin{array}{l} \bullet \quad M_w > 8.6 : \text{moment} \\ \text{tracking with good} \\ \text{accuracy and low error} \\ \end{array}$
- $\begin{array}{l} \bullet & 8.2 < M_w < 8.6 : \\ \text{early tracking more} \\ \text{difficult, final} \\ \text{magnitude estimation} \\ \text{achievable} \\ \end{array}$
- $M_w < 8.2$: poorly constrained by data, $M_w \, 8.3$ lower limit of PEGSNet sensitivity

Real data: the 2011 Mw 9.1 Tohoku earthquake

- Retrospective analysis, compared with 'true' STF and other EEWS performances.
- \bullet 50 < t < 100 s: tracking with slight under-estimation, with a trend suggesting rupture is in progress.
- \bullet t>120 s: correct prediction, when rupture is almost over.

Conclusions

Conclusions

- Unambiguous PEGS observations from earthquakes in the M_w [7.9 9.1] range, in different tectonic settings.
- Detection enabled by the global deployment of very broadband sensors (single-station or array-based observations, depending on the observation conditions).
- Due to its sensitivity to key source parameters, PEGS can be a powerful tool for large earthquake monitoring, and can be combined with other observables (seismic, GNSS) to increase performance in real time.
- Using deep learning: instantaneous tracking of moment release (no saturation, zero time delay).

Thank you

PEGS observations

PEGS observations so far

Candidates for PEGS observations

PEGSNet

PEGSNet: the training database

Few real observations of PEGS are available: training must rely on synthetic data.

- Real noise added to synthetic PEGS
- 500k synthetic earthquake sources
- Location, dip and strike from Slab2.0 (Hayes et al. 2018)
- M_w follows uniform distribution *U* [5.5, 10.0]
- STF empirical model (Meier et al. 2017)
- P-wave travel times assumed known

(Licciardi et al., 2022)

PEGSNet: architecture and learning strategy

- T₁ is randomly chosen during training.
- The value of $M_{\rm w}$ at the end of the input window is used as label.
- The model learns patterns in the data as $M_{\rm w}$ evolves with time.
- The model is designed to track the evolving magnitude and not to forecast its value.

Results on test set: low noise conditions (0.5 nm/s²)

Successful prediction if the estimated $M_w(t)$ lies within \pm 0.4 magnitude units from the ground truth value.

- Under favorable noise conditions: $\sigma_{\text{noise}} < 0.5 \text{ nm/s}^2$
- $7.9 < M_w < 8.3$: final M_w prediction with 70-80% accuracy, 150 seconds from origin

Results on test set: $M_w = 9.0 \pm 0.05$

- Magnitude $M_w(t)$ estimation with zero delay once $M_w > 8.3$
- Ability to recover the actual moment release sooner or later, depending on the source onset

Dealing with noise

<u>Synthetic PEGS + noise from different</u> <u>pre-event recordings</u>

- t < 55 s : high variability due to noise
- $t > 55 \text{ s} (M_w > 8.3)$: similar predictions
- PEGSNet able to generalize well to real data

Pre-event noise only, no PEGS

- Predicted M_w is always below model sensitivity
- $M_w = 6.5$ is a baseline value for noise

Improving monitoring capabilities: in the future

How can we improve earthquake monitoring capabilities?

With gravity strainmeters :

- under development :
- torsion bars
- gravity gradiometers
- ullet initial goal : detection of Gravitational Waves at f $< 1~{\rm Hz}$
- prototypes at target sensitivity in a few years

Torsion bar : relative rotation

Tidal forces by gravitational waves

Test-mass bar

Fabry-Perot interferometer

<u>Gradiometer</u>: relative displacement

from http://www.gw-indigo.org

Early response of a seismometer vs. a gravity strainmeter

Now: PEGS

In the future : PGS

Gravitational acceleration : $\boldsymbol{a}(\boldsymbol{r},\,t) = \delta \boldsymbol{g}(\boldsymbol{r},\,t) - \ddot{\boldsymbol{u}}(\boldsymbol{r},\,t)$

Gravity strain :
$$h(\mathbf{r}, t) = \int_0^t \int_0^{\tau'} \nabla \delta \mathbf{g}(\mathbf{r}, \tau) \ d\tau d\tau'$$

<u>limitations</u>:

- background seismic noise
- ullet compensation between $\delta {
 m g}$ and $\ddot{
 m u}$

<u>differential measurement</u>:

- noise reduction
- ü no longer recorded