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PEGS detection and simulation



How do we model PEGS 7

Seismometer Air As soon as an earthquake occurs (and thus before
~n  Gravity-induced motion the arrival of seismic waves), a weak signal is
U Earthquake expected to be recorded at a broadband seismometer,
= L
due to the combination of :
N Seismic waves
\/ v

Gravity perturbation o direct effect : the gravity perturbation induced

by the earthquake rupture and the elastic waves
(Harms et al. 2015, Montagner et al. 2016)

e induced effect : the elastic relaxation of the

Earth, itself affected by the gravity perturbation
(Vallée et al. 2017, Juhel et al. 2018)

Schematic representation at a time between earthquake onset and first P-wave arrival
(direct elastic waves are inside the grey area)
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the 2011 My, 9.1 Tohoku earthquake

- e the earthquake focal mechanism o _
Prompt elastogravity signals (PEGS) depend on : | ... within the duration of the rupture !
e the earthquake magnitude

(Vallée et al. 2017, Juhel et al. 2018)

m—— () bserved waveforms == Simulations downscaled to M8.5
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Factors controlling PEGS detectability

Moment rate (in N.m/s)

dashed : +/- 0.4 nm/s? | dotted : +/- 1.0 nm/s?

For a given My, and STF, strike-slip and reverse dip-slip (20 km, 10°)
deep earthquakes generate larger PEGS
than thrust earthquakes on shallow
dipping interfaces 4
(Vallée and Juhel, 2019)
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Vertical elastogravity perturbation at P-wave arrival time (m/s?)
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é —— My, 9.3 Sumatra-Andaman (Tsai et al. 2005)
64\ ................................. —— My, 9.1 Tohoku-oki (Global CMT)
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e Direct relation between STF and gravity perturbations :
2- a rapidly growing STF increases signal observability
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the 2012 M, 8.6 Wharton Basin earthquake

Predicted PEGS amplitudes (GCMT)

MIIIIII I I I Illllllm
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Vertical elastogravity perturbation at P-wave arrival time (m/s?)

dashed: +/- 0.4 nm/s? | dotted: +/- 1.0 nm/s? | solid: +/- 1.3 nm/s?

(Vallée and Juhel, 2019)

Observed and modeled waveforms (SCARDEC)
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Good agreement between observed and modeled PEGS



the 2018 M, 8.2 deep Fiji earthquake

(Vallée and Juhel, 2019)

Predicted PEGS amplitudes (GCMT) Observed and modeled waveforms (SCARDEC)
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the 2018 My, 7.9 Gulf of Alaska earthquake

S, (SNR)
1N

stations in a relatively quiet seismic period

seismic noise, detection can be achieved by

2| . . .
-1000  -800  -600  -400

PEGS detection requires good broadband

For earthquakes generating PEGS close to

combining observations at several sensors

a) Optimal stack over the best 94 sensors | | -
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How can we use PEGS
for early magnitude estimation
in an operational EWS 7
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(Licciardi et al., 2022)

PEGSNet: a deep convolutional neural network (CNN) that
combines convolutional layers and dense layers in sequence

(Licciardi et al., 2022)



Results on test set : predictions accuracy

Successful prediction if the estimated My(t) lies within -

Accuracy
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Average residuals
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- 7.0
300

- 7.5

- 0.4 magnitude units from the ground truth value.

e M, > 8.6 : moment

tracking with good
accuracy and low error

early tracking more
difficult, final

magnitude estimation
achievable

M. < 8.2 : poorly

constrained by data,
My 8.3 lower limit of
PEGSNet sensitivity



Real data : the 2011 M\, 9.1 Tohoku earthquake

2011/03/11 05:46:24 -- Tohoku-OKi

JMA EEW
FAnDer2
BEFORES
mesm This study

0 50 100 150
Time after origin [s]

200

e Retrospective analysis, compared with ‘true’ STF and other EEWS performances.

(Licciardi et al., 2022)

e 50 < t < 100 s : tracking with slight under-estimation, with a trend suggesting rupture is in progress.

o t > 120 s : correct prediction, when rupture is almost over.



Conclusions



Conclusions

e Unambiguous PEGS observations from earthquakes in the M,, [7.9 - 9.1] range, in different tectonic settings.

e Detection enabled by the global deployment of very broadband sensors (single-station or array-based observations,

depending on the observation conditions).

e Due to its sensitivity to key source parameters, PEGS can be a powerful tool for large earthquake monitoring, and

can be combined with other observables (seismic, GNSS) to increase performance in real time.

e Using deep learning : instantaneous tracking of moment release (no saturation, zero time delay).



Thank you



PEGS observations



PEGS observations so far
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Candidates for PEGS observations




PEGSNet



PEGSNet : the training database

Few real observations of PEGS are available : training must rely on synthetic data.

(a) (b)
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(Licciardi et al., 2022)



PEGSNet : architecture and learning strategy

(Licciardi et al., 2022)

e T is randomly chosen during training.
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Results on test set : low noise conditions (0.5 nm/s2)

Successful prediction if the estimated My(t) lies within -

Accuracy
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- 0.4 magnitude units from the ground truth value.

e Under favorable noise
conditions :
Onoise < 05 I’lﬁ]/S2

[ 7.9<Mw<8.3:
final M\, prediction with
70-80% accuracy, 150
seconds from origin
time.



Results on test set : My, = 9.0 = 0.05

9.5
9.0

_ . . . 8.5
e Magnitude My (t) estimation with zero delay 8 0
_8.

once My, > 8.3
=75

7.0
6.5
6.0

e Ability to recover the actual moment release

sooner or later, depending on the source onset
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Dealing with noise

0 | 50
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Time after origin [s]

200

0 | 50
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Synthetic PEGS + noise from different
pre-event recordings

e t < 55 s : high variability due to noise

e t> 555 (M, > 8.3) : similar predictions

e PEGSNet able to generalize well to real data

Pre-event noise only, no PEGS

e Predicted My, is always below model sensitivity

e My, = 6.5 is a baseline value for noise



Improving monitoring capabilities:
in the future



How can we improve earthquake monitoring capabilities ?

_ , , e torsion bars
With gravity strainmeters : e under development :

e gravity gradiometers
e initial goal : detection of Gravitational Waves at f < 1 Hz

® prototypes at target sensitivity in a few years

Torsion bar : relative rotation Gradiometer : relative displacement
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http://www.gw-indigo.org

Early response of a seismometer vs. a gravity strainmeter

‘NOW : PEGS‘ ‘In the future : PGS‘

Seismometer Alr Gravity strainmeter Air

Gravity-induced motion A1 Gravity-induced motion

™ T
i Earthquake ) Jl] no longer recorded ! Earthquake
F ] ]
Seismic waves Seismic waves

— . —

Gravity gradient perturbation

Gravity perturbation

t pr’
Gravitational acceleration : a(r, t) = dg(r, t) — (r, t) Gravity strain :  h(r, t) :/ / Vég(r, 7) drdr’
0 Jo

e background seismic noise e noise reduction

limitations : | ) differential measurement :
e compensation between 6g and i e U no longer recorded




