VLP oscillations of Piton de la Fournaise Insights into Caldera Collapses and Dike resonance

Zacharie Duputel

Observatoire Volcanologique du Piton de la Fournaise Institut de Physique du Globe de Paris

Valérie Ferrazzini - OVPF/IPGP Olivier Lengliné - ITES/EOST Luis Rivera - ITES/EOST Cyril Journeau - ISTerre

Variety of seismo-volcanic signals

Diversity of volcanic sources

- Volcano Tectonic earthquakes:
 - Brittle failures in the edifice
 - Link with magma transport ?
- Long-Period / Very-long-period events:
 - Resonating fluid-filled conduit ?
 - Moving fluid ?
 - Caldera collapse ?
- Hybrid earthquakes:
 - Brittle failures + conduit resonance ?
 - Brittle failures + path effect ?

- Volcanic tremor:

- Long-lived resonating magma-filled conduit,
- Flow-induced oscillations,
- Bubble dynamics ...

	HUMMININ MANY CONTRACTOR	Volcano	o Tectonic Eart	hquake
Soputan 10/04/2008 11:34 UTC				
	hallandara lalan ana ana ana ana ana ana ana ana	Lo MwWywlpwwwwwwwwww	ng-period eart	hquake
Soputan 04/07/2008 10:38 UTC				
	MMmmm	ڛڹ؇ڡڸ؇ڡۑڵٵۑ؞ڝڹؠ؊ۑڡٵڔ؊ۑ؊ڹ؇	Hybrid eart	hquake
Huila 11/03/2009 22:25 UTC				
		Very-lo	ng-period eart	hquake
Harrat Lunayyir 05/	19/2008 01:51 UTC	······		
				Tremor
Soputan 10/07/2008	3 1:13 UTC			
0s 10	s 20s	3	30s	40s

Zoback et al., 2013

Source mechanism of VLP signals ?

The 2007 collapse at Piton de la Fournaise volcano

Largest collapse in ~300 years :

- Started with a low-elevation eruption
- Collapse started 3 days after the eruption onset
- Series of 48 repeating collapse events
- Resulted into a depression of 330 m in ~9 days

Before the collapse

After the collapse (Δz>300m)

Fontaine et al. (2019), Duputel and Rivera (2019)

VLP signals during the first collapse event

Source: Moment Tensor + Single Force

Duputel and Rivera (2019)

Time, sec

Collapsing piston

Displacement correlated to magma outflow

- Piston displacement & Reservoir volumetric change derived from source model
- Lava extrusion rate derived from seismic amplitudes (from Hibert et al., 2015).
- Reservoir volumetric change consistent with lava extrusion rates derived from seismic amplitudes

Volumetric change rate vs magma outflow rate

VLP signals during Aug. 2015 eruption at Piton de la Fournaise

Red lines = eruptive fissures Black Circles = pre-eruptive VT swarm Triangles = Broadband stations

VLP signals during Aug. 2015 eruption at Piton de la Fournaise

Black Circles = pre-eruptive VT swarm Triangles = Broadband stations

VLP signals during Aug. 2015 eruption at Piton de la Fournaise

Tremor amplitude at RVL, μm/s

Searching for hidden VLP events

Template matching

- Using visual detections as templates
- Manual screening to remove large teleseismic arrivals
- Bandpass filter 14-50 sec
- 43 detections -
- VLP detected when the emission rate decreases

VLP detections - Events 1 to 12 / 43 - SNE - 0.01-0.07 Hz

VLP source - CMT inversion

Inverted parameters:

MT components, lat, lon, dep, resonance period T_R , decay time τ .

Damped oscillating moment-rate function: $m(t) = exp(-t/\tau) sin(2\pi t/T_R)$

BON

SNE

4 μm

Time, sec

FOR

Time, sec

FLR

Time, sec

Black = observed waveforms Blue = predictions

VLP source - CMT solutions from Aug. 24 to Oct 31, 2015

Persistent source mechanisms & locations

VLP source - CMT solutions from Aug. 24 to Oct 31, 2015

Decrease of the resonance period T_{R}

- T_R~20sec in August 2015
- T_R~12sec in October 2015

Rectangular fluid-filled crack (Maeda and Kumagai, 2017)

- Decrease of the Dike width ?

VLP source - CMT solutions from Aug. 24 to Oct 31, 2015

Decrease of the resonance period T_{R}

- T_R~20sec in August 2015
- T_R~12sec in October 2015

Rectangular fluid-filled crack (Maeda and Kumagai, 2017)

- Decrease of the Dike width ?
- Consistent with field observations

Conclusion

VLP signals - Caldera collapses

- Collapsing crack: reservoir contraction
- Vertical force: collapse of the piston

VLP signals - Dike resonance

- Resonating magmatic dike

Thank you for your attention

Piston spring-block model

Simple model from Kumagai et al (2001):

 Weight of the collapsing piston balanced by 1.Friction on the ring fault
2.Pressure in the magma reservoir

- Events durations controlled by the geometry of the piston & properties of the magma reservoir.

- $\kappa = 10^8$ - 10^{10} Pa for durations of 6-14sec

- Time interval between collapses explained by changes of outflow rate and frictional resistance
 - Hydrothermal fluids ? (Michon et al., 2011)
 - Frictional melting ? (Han et al., 2019)

Ring-shaped thermal anomaly (Urai et al., 2005)

VLP signals on tiltmeters Example - Event 9 (2015-08-24 19:08:40 UTC)

