40 years of core studies from broadband data

Annie Souriau and Marie Calvet

Institut de Recherche en Astrophysique et Planétologie (Dynamique des Intérieurs Planétaires)

Observatoire Midi-Pyrénées, Toulouse, France

Symposium pour les 40 ans de Geoscope, Paris, 29-30 juin 2022

Introduction : evolution of data and ideas

See references in the chapter *"The Earth's core"* by Souriau A. and Calvet M., in the *Treatise on Geophysics*, G. Schubert, Ed. in chief, 2nd Edition, Vol. 1, 2015, p. 725-757

The tools in seismology

Normal modes

- \bullet A global approach for $V_{I\!\!P},\,V_{S\!\!S}$ and density
- No sensitivity at the Earth center

Body waves

- Ray approximation (infinite frequency)
- Travel times, amplitudes and waveforms
- P and S waves (no S in the liquid)

• A poor distribution of paths Deficit of N-S paths

Scattered waves

• departure from balistic propagation, diffusion information on the texture

Laske 2006

R

The CMB and the liquid core

Comparison of PKP and P5KP

(BRB data)

PKPab

P5KPab

- Almost no attenuation in the liquid core (Qp = 5000-10000, *Qamar and Eisenberg, 1974*)
- No lateral heterogeneity in the liquid core
- Core-mantle boundary (CMB) is a sharp discontinuity
- The reflexion coefficient at CMB is high for this incidence angle
- No strong topography at CMB (< 2 km, *Bolt, 1982*)

Souriau and Poupinet, 1991

The solid inner core

Normal modes, evidence for cylindrical anisotropy inside the inner core

Laske and Widmer, 2006; Courtesy of Laske, 2006; Tkalčić, 2017

Anisotropy in P-wave velocity and attenuation: evidence from P-waves

• Inner core • Liquid core (reference)

P-waves // to Earth rotation axis are faster and more attenuated than those parallel to equatorial plane.

High velocity ⇔ high attenuation Correlation opposite to that observed in the mantle

Preferred orientation of iron crystals or grains (+ preferred orientation of ellipsoidal fluid pockets)

Souriau et Romanowicz, 1996

The frequency dependence of the attenuation is also anisotropic

Polar paths: Very strong dependence of the attenuation to frequency (not observed for equatorial paths)

Souriau, 2009

Velocity, attenuation, but also their frequency dependence vary with ray orientation High velocities ↔ high attenuation This may give strong constraints on the texture of the inner core

The puzzling hemisphericity of the inner core

The hemispherical variation in anisotropy

The hemisphericity in the isotropic layer heterogeneity

Cao et Romanowicz, 2004

The scatterers

Scatterers inside the inner core : Observations

Kennett, 2004; Calvet and Margerin, 2008

Wu, Pang and Koper, JGR 2022, submitted

C.Am. 2004 11 20 \rightarrow ILAR Alaska

Concluding remarks

A great contribution of broadband data (e.g. Geoscope) to core studies

A promising future

- Many unsolved exciting problems, implying observations, modelling, interactions with other fields of physics and chemistry

- New observational approches (arrays, ambient seismic noise correlations, coda correlations, big data approaches, deep learning, time dependent seismology...)

It is imperative to patiently collect data on stable networks

And in addition, for core studies:

- More polar paths (more stations at high latitudes)
- Small aperture arrays

PKPPKP: *see also Tkalčić, 2015, for direct observations*

Thank you!

Peyo, for Paul Melchior, The Earth's core, 1986