

Drapes work

Michel-Ange [beginning XVIe]

Reveal the complexity which includes

- Various amplitudes
- Various scales
- Various texture

Drapes work

Reveal the complexity which includes

- Various amplitudes
- Various scales
- Various texture

Michel-Ange [beginning XVIe]

Ballmer et al. [2015]

We aim to do the same with tomography

How to study the deep Earth?

IRIS.EDU

Evidences for a heterogeneous Earth's mantle

600 800 Introduction Method Results Challenges Availability What is the future?

Tomography principle

Hypothesis

Homogeneous Earth's mantle

Introduction Method Results Challenges Availability What is the future?

OOO● OOOOO OOOOO OOO

Tomography principle

Hypothesis

Homogeneous Earth's mantle

Observations

Travel time anomalies Waveforms mismatching

Tomographic inversion

3D model of seismic velocities of the Earth's mantle

Forward problem $d = g(m) + \epsilon$ Inverse problem

m = ... ?

PARAMETRIZATION`

- Spherical harmonics, spherical splines, radial splines,
- Velocity, anisotropy

SEISMIC DATA

- Normal modes, surface waves and body waves
- Measurements or waveforms

REGULARIZATION

Damping parameter

THEORY

Ray theory or finite frequency kernels

Networks

Theory

Zaroli et al. [2010]

Theory

Durand et al. [2017]

Zaroli et al. [2010]

Regularization, parametrization

Oceanic lithosphere and cratons

Oceanic lithosphere and cratons

Gung et al. [2003]

Imaging slabs

Durand et al. [2017]

Upper-lower mantle transition

Mantle plumes

Montelli et al. [2004] French & Romanowicz [2015]

LLSVPs

Comparison of shear wave velocity models

Radial anisotropy

Attenuation

Attenuation

3D reference mantle model

The aim of the project is to develop a 3D seismic reference model (REM-3D) for the Earth's mantle, parameterized in terms of V_s , V_p , ρ , and radial anisotropy. REM-3D will come with uncertainty estimates.

Where to find the models and how to plot them

- IRIS EMC: https://ds.iris.edu/ds/ products/emc-earthmodels/
- SeisTomoPy: https://github.com/ stephaniedurand/SeisTomoPy_V3
- Submachine: https://www.earth.ox. ac.uk/~smachine/cgi/index.php

What is the future?

• The use of ambient noise to enlarge the coverage in the deep mantle

New data with the rotational sensors

Bayesian approach

